

7 6 0

Membranes for Textile and Garment Applications

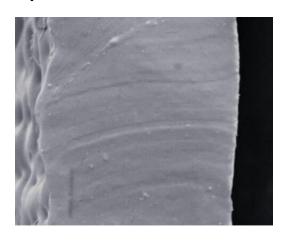
Dr Mark Whiskens PIL Membranes Ltd

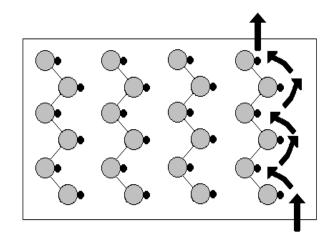
Stand number: A 39

Why use Membranes

- Membranes are used inside a garments
 - Typically they are laminated to the outer fabric with an adhesive
- They are used to make the garment:
 - Waterproof/ Windproof
 - Offer protect against the winter elements to keep you warm and dry

- Breathable
 - so perspiration (sweat) can move through the membrane to the outside of the garment
 - allowing the user to feel comfortable

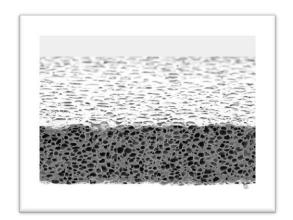

Why use Membranes

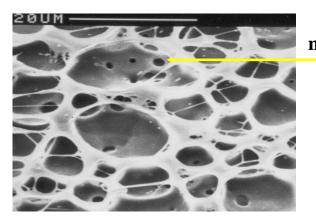

- A secondary use of membranes is that they can be used to provide other functionalities such as:
 - Protection against chemicals
 - Protection against blood borne pathogens and viruses

Why use Membranes

- They also need to be compliant with other requirements so they do not detract from the performance criteria of the garment e.g.
 - Flame resistance
 - Thermal heat resistance
 - Cold flex resistance
 - Durable
 - Stable to repeat washing or auto-clave

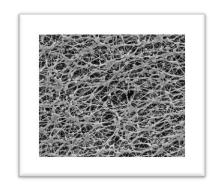
Hydrophilic – solid membrane



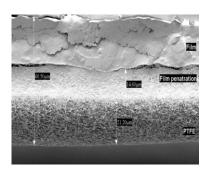

- Breathe through a process of absorption and migration driven by heat and high humidity.
- Chains of chemical groups which attract water vapour molecules.
- Water vapour molecules use the chains as stepping stones to travel from one site to the other.

- Hydrophilic solid membrane
- Examples include:
 - Polyurethane membranes film formed by coating of a polymer solution on to a substrate
 - TPU membranes film formed by extrusion of a melt polymer
 - Copolyester block copolymer of polyester and polyether film formed by extrusion of a melt polymer
 - Issues in processing can be controlling the uniformity/ thickness of the film
- Advantages:
 - Light weight (10 g/m2)
 - Soft, flexible and quiet

Hydrophobic – microporous membrane


micron-pore < 1 μm

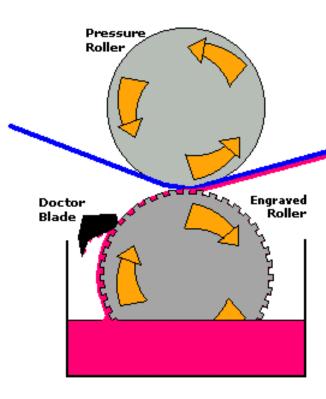
- Breathes by allowing sweat in the form of water vapour molecules to pass through interconnecting micro-pores driven by heat and high humidity
- Passage of water droplets prevented by the micro-pores (that are 100 times smaller than a water droplet) and by surface tension effect due to hydrophobic character of the membrane i.e. repels water droplets


- Hydrophobic microporous membrane
- Examples include:
 - Polyurethane membranes produced by coagulation of polymer solution in water onto a carrier
 - Issues in processing can be controlling the structure to balance waterproofness versus breathability
- Advantages:
 - Dry feel for comfort
 - Good wash performance at high temperatures
 - Good cold flex properties

- PTFE based on a microporous membrane
 - Monolithic PTFE

- Coated PTFE
 - Structure is coated with a solid polymer typically a very breathable polyurethane.

- Coated PTFE microporous membrane
- Manufactured by:
 - Microporous PTFE manufactured by biaxial stretching of PTFE film/ PU coating applied as solution
 - Issues in manufacture can be uniformity of PTFE membrane/ delamination of PU coating from PTFE


- Advantages:
 - Excellent cold flex properties
 - Excellent heat resistant properties

- Membranes can be laminated with adhesive to a vast range of textile substrates to form functional composites.
- Typically these laminates are 2 or 3 layers
- Adhesive weight needs to be optimised and should be applied in a discontinuous pattern (e.g. dots). This ensures higher breathability and softness/ flexibility of the final laminate
- Some key manufacturing methods for lamination:
 - Gravure Roller
 - Rotary Screen
 - Heated Roller with joiner film

- Gravure Roller hot melt dot lamination
- Involves the application of an adhesive to a membrane or substrate applied in a dot pattern
- The adhesive is typically a melted reactive polyurethane adhesive.

- Rotary Screen
- The adhesive is forced through a rotating roller with a series of small holes and applied the adhesive in a dot pattern
- The adhesive is typically a water based polymer paste which is typically a thermoplastic

B: Squeegee

C: Back Roller

- Heated Roller with joiner film
- This method thermally bonds the fabric layer to the membrane with an adhesive film using a heated roller
- Can be used for membranes ideally with a discontinuous web adhesive.

Which is the right membrane to use

- Choice of membrane is dictated by:
 - Standards used in the fabric specification
 - Environment the garment will be used in
 - Additional protection requirements
 - Cost
- Typical tests in a standard for a laminate would include:
 - Waterproofness before and after washing
 - Breathability
 - Abrasion and flex resistance
 - Chemical or viral penetration resistance
 - Bond strength of membrane to fabric

Fire Fighters

- The key requirements are
 - Waterproof and breathable
 - Fire retardancy and thermal heat resistance
 - Chemical resistance
 - Blood borne pathogen and viral resistance
- Key Products
 - PTFE bicomponent FR membrane
 - Hydrophilic PU FR membrane (high temperature resistance)

Medical Gowns and Drapes

- The key requirements are
 - Waterproof and breathable
 - Blood borne pathogen and viral resistance
 - High temperature wash to kill viruses
 - Repeat wash cycle > 100 cycles
- Key Products
 - Hydrophobic Microporous PU membrane

- Military Combat forces
- The Key requirements are
 - Waterproof and breathable
 - Windproof
 - Resistance to prolonged exposure to extreme low temperature
 - Light weight and very durable
- Key products
 - PTFE bicomponent membrane
 - Microporous PU membrane
 - High breathe Hydrophilic membrane

Industrial

- The key requirements are
 - Waterproof and breathable
 - Cold weather performance
 - Oil / petroleum protection
 - Chemical protection
 - Cost
- Key products
 - Will depend on what level of protection is required
 - Weather protection
 - Hydrophilic membrane
 - Microporous PU membrane
 - Flame or chemical protection
 - Hydrophilic FR membrane
 - PTFE bicomponent FR membrane

PIL Membranes offers

- Hydrophilic membranes at 12, 25 and 40 microns
- Microporous membranes at 30, 45 and 55 microns
- Fire retarded membranes both hydrophilic and microporous
- High chemical resistant hydrophilic membranes
- PTFE bi components , standard, fire retarded and anti static

www.porellemembranes.com info@pilmembranes.com

UK: +44 (0) 1553 622000 Shanghai: +86 21 6182 6791

Hong Kong: 00852 2162 7316 Moscow: +7 (495) 616 20 24